

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Convolutional Neural Networks

Challenges Processing Images, Audio, Text, Video...

- Much bigger inputs?
- Variable size inputs?
- But some obvious structure to leverage?

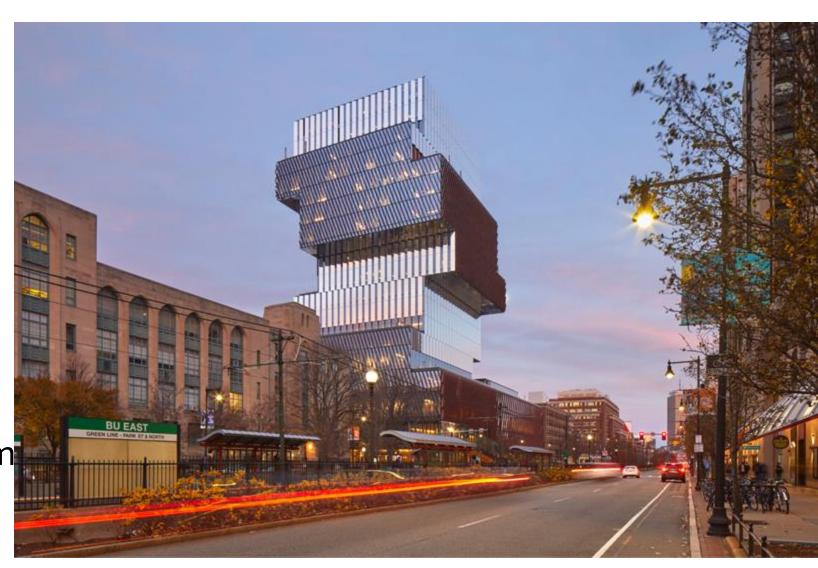
Bigger Inputs

Original image size:

2560x1707x3=

13,109,760 values

Original image: kpmb.com



Variable Size

Original size: 3024x4032x3=

36,578,304 values

Vs previous 2560x1707x3

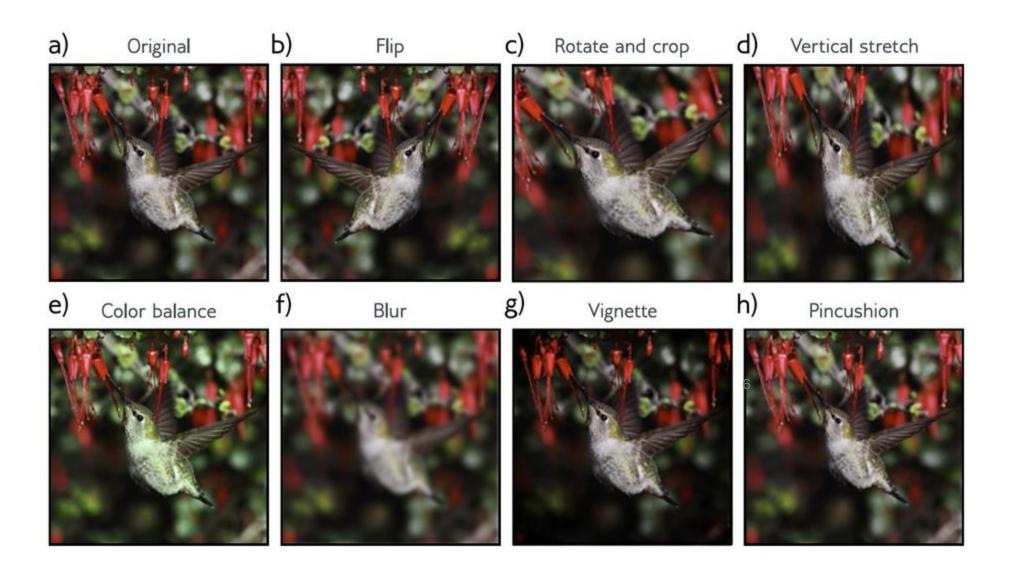
(not even same ratio)

Structure

←Original 3024x4032x3

Shrunk ⅓ → 378x504x3

Data augmentation (from last time)



Convolutional Networks

Our first useful approach to these problems with large but structured inputs.

- Much bigger inputs? 🔀 Variable size inputs? 💢 but often can rescale as workaround
- But some obvious structure to leverage?

Spoiler: recognizing structure helps learn with bigger inputs.

Convolutional Networks as Regularization

TLDR: process different parts of the image as similarly as possible to reduce overfitting.

BTW project 1 is using convolutional layers. Anyone notice how many parameters? $256 \times 192 \times 3$

windth height color channels

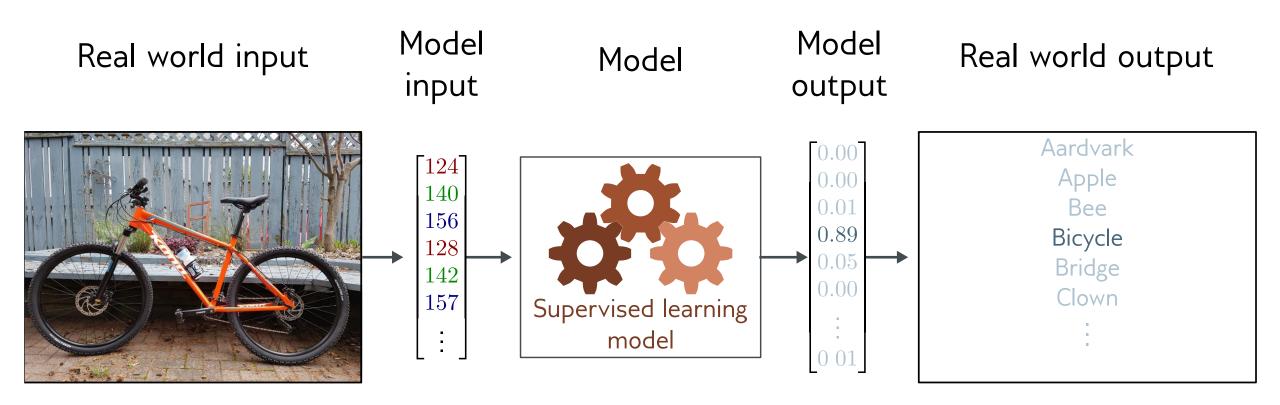
model.parameters() > # 3442

Plan for Today

- 1D Convolutional Neural Networks
- 2D Convolutional Networks

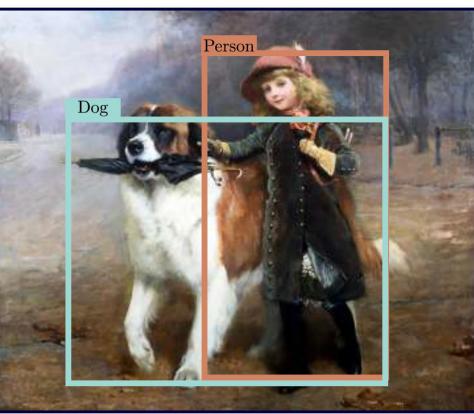
- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Image classification



- Multiclass classification problem (discrete classes, >2 possible classes)
- Convolutional network

Object detection (+ classification)



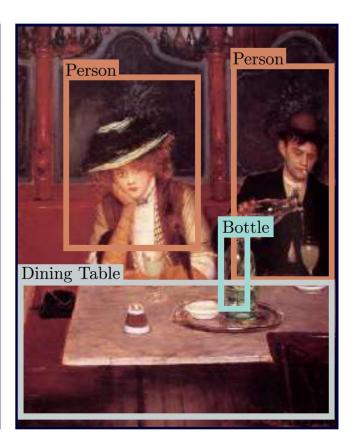
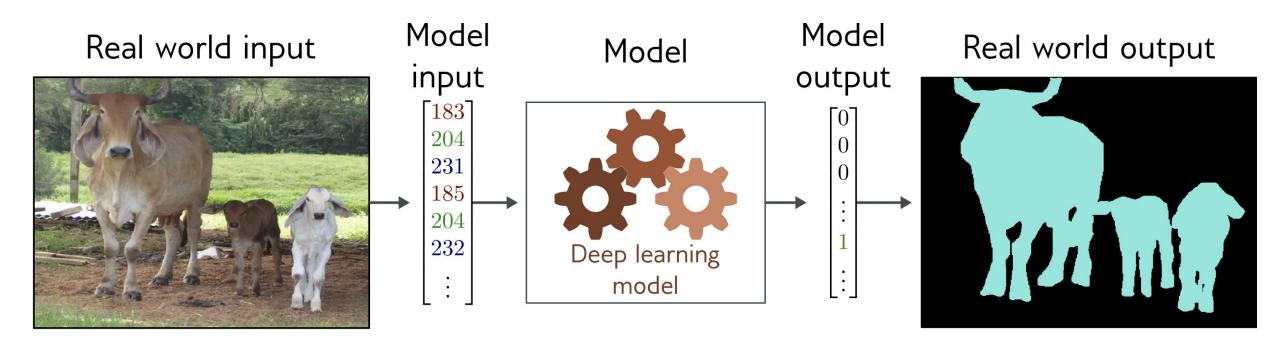


Image segmentation



- Multivariate binary classification problem (many outputs, two discrete classes)
- Convolutional encoder-decoder network

Networks for images

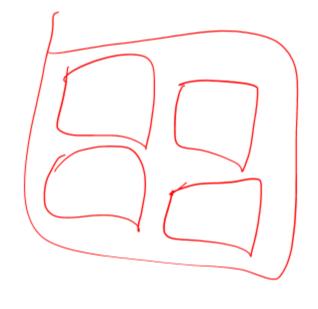
Problems with fully-connected networks

- 1. Size
 - 224x224 RGB image = 150,528 dimensions
 - Hidden layers generally larger than inputs
 - One hidden layer = 150,520x150,528 weights -- 22 billion
- 2. Nearby pixels statistically related
 - But could permute pixels and relearn and get same results with FC
- 3. Should be stable under transformations
 - Don't want to re-learn appearance at different parts of image

P P P P

Convolutional networks

- Parameters only look at local image patches
- Share parameters across image



Any questions?

Moving on

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Invariance

A function f[x] is invariant to a transformation t[] if:

$$f[t[x]] = f[x]$$

i.e., the function output is the same even after the transformation is applied.

Invariance example

e.g., Image classification

• Image has been translated, but we want our classifier to give the same result

Equivariance

• A function f[x] is equivariant to a transformation t[] if:

$$\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{t}[\mathbf{f}[\mathbf{x}]]$$

i.e., the output is transformed in the same way as the input

Equivariance example

e.g., Image segmentation

• Image has been translated and we want segmentation to translate with it

Any questions?

Moving on

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Convolution in 1D

Input vector x:

$$\mathbf{x} = [x_1, x_2, \dots, x_I]$$

Each set of 3 consecutive

Output is weighted sum of neighbors:

$$z_i = \omega_1 x_i + \omega_2 x_i + \omega_3 x_i + \omega_3 x_i$$

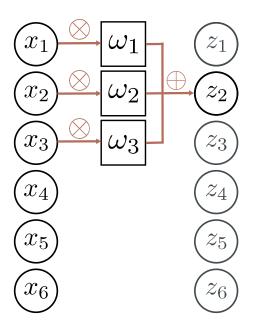
 $z_i = \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i-1}$

Convolutional kernel or filter:

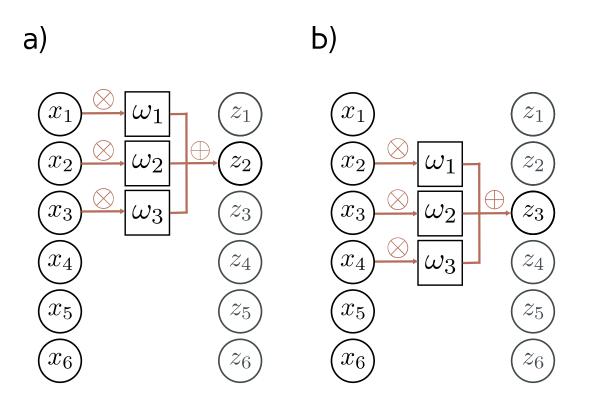
$$oldsymbol{\omega} = [\omega_1, \omega_2, \omega_3]^T$$
 Kernel size $\stackrel{\text{(3)}}{=}$

Convolution with kernel size 3

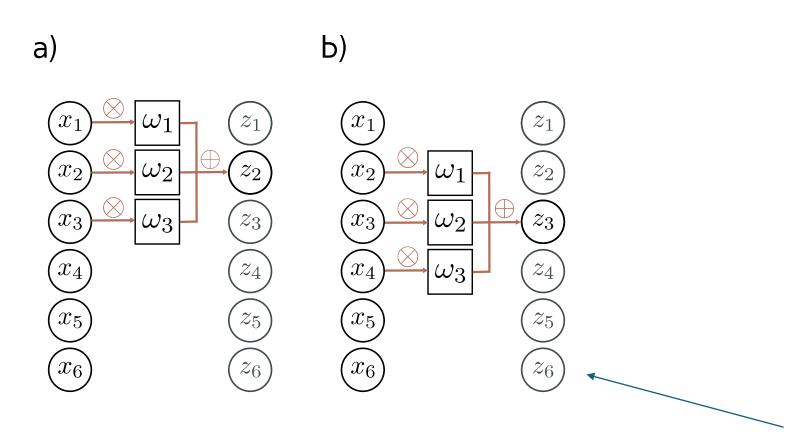
a)



Convolution with kernel size 3



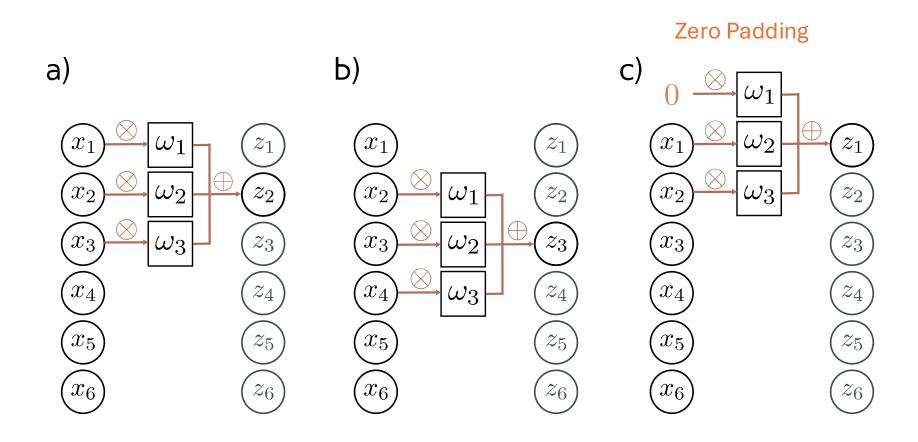
Convolution with kernel size 3



Equivariant to translation of input

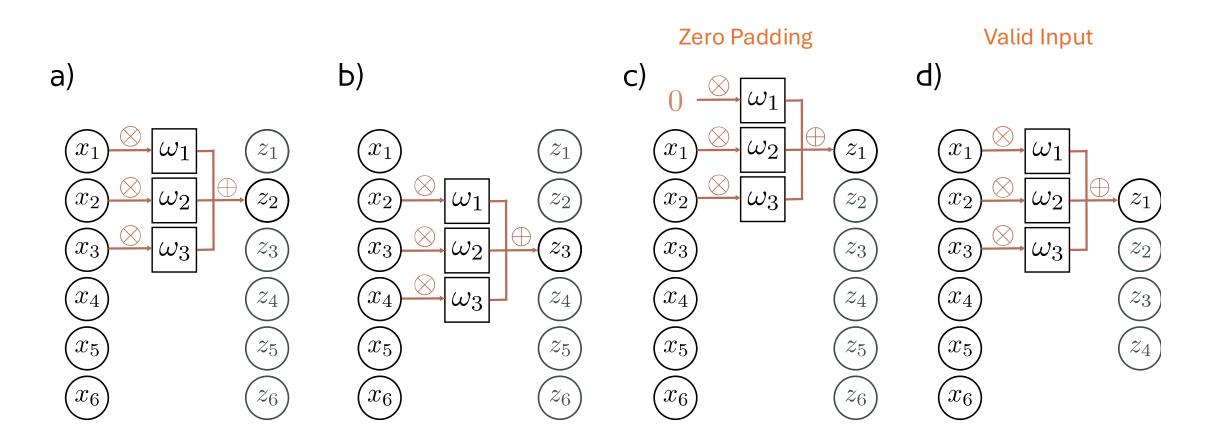
$$\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{t}[\mathbf{f}[\mathbf{x}]]$$
24

Zero padding



Treat positions that are beyond end of the input as zero.

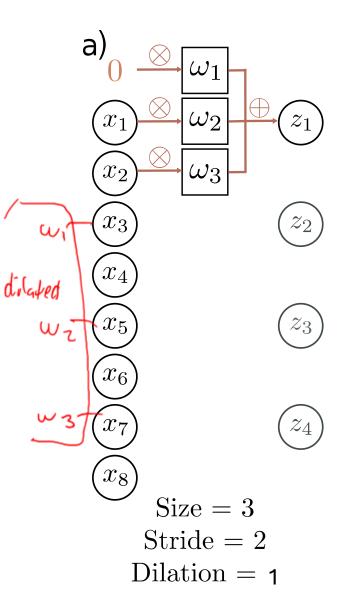
"Valid" convolutions

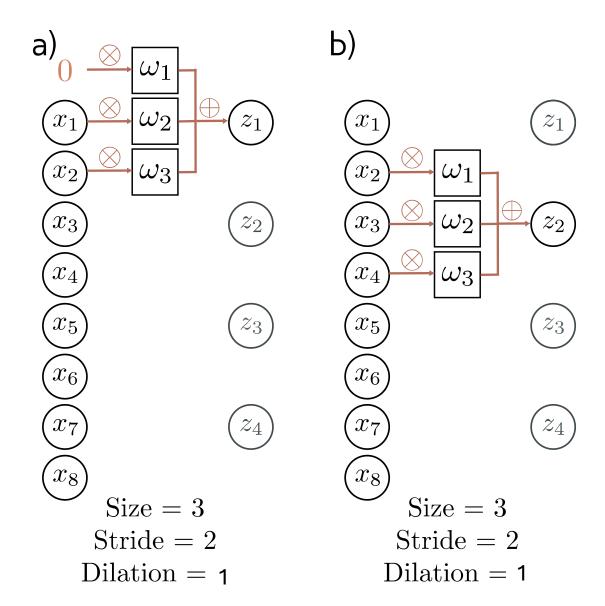


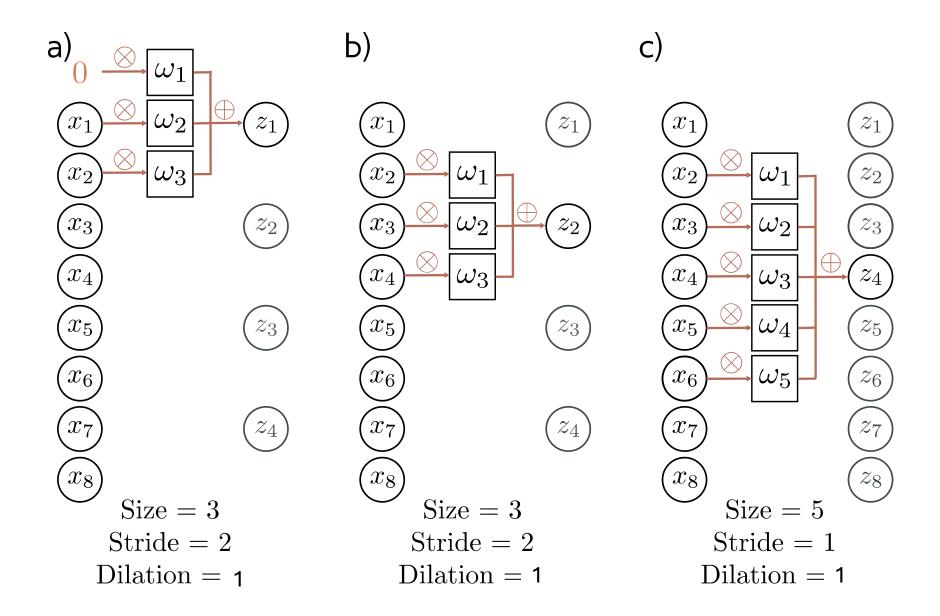
Only process positions where kernel falls in image (smaller output).

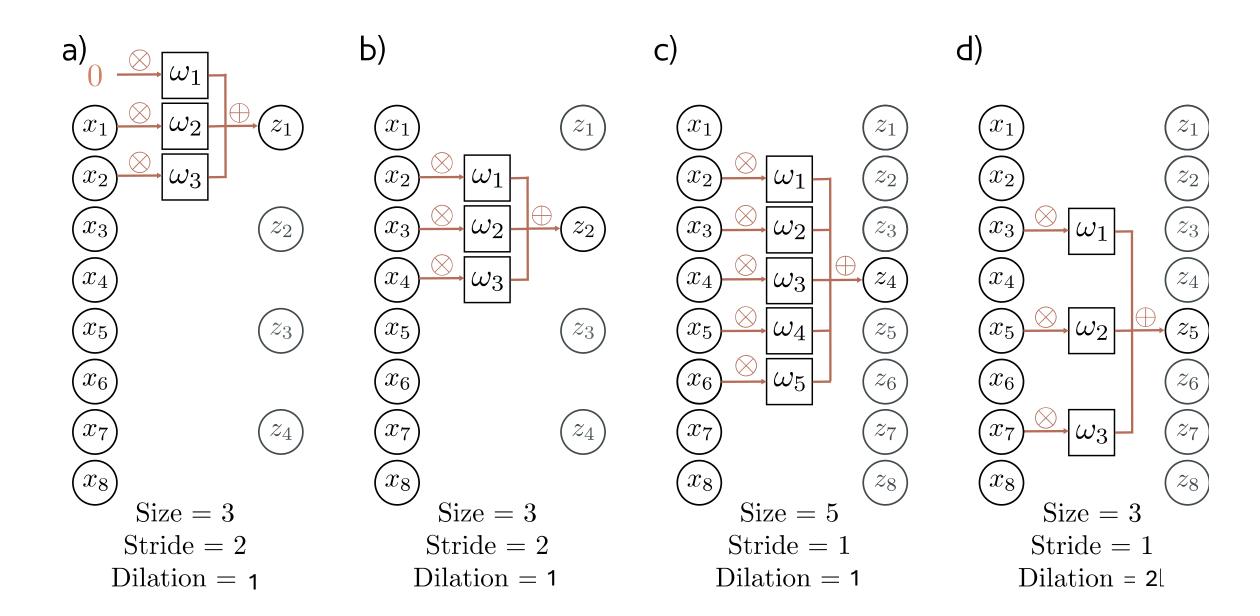
Stride, kernel size, and dilation

- Stride = shift by k positions for each output
 - Decreases size of output relative to input
- Kernel size = weight a different number of inputs for each output
 - Combine information from a larger area
 - But kernel size 5 uses 5 parameters
- Dilated or atrous convolutions = intersperse kernel values with zeros
 - Combine information from a larger area
 - Fewer parameters



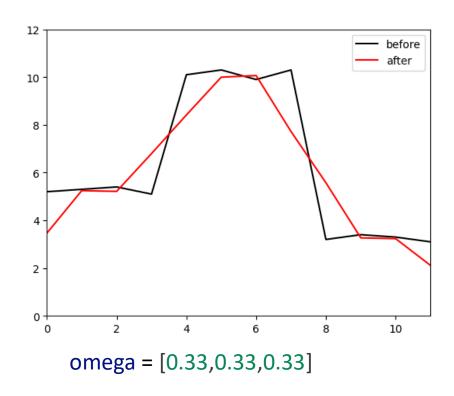


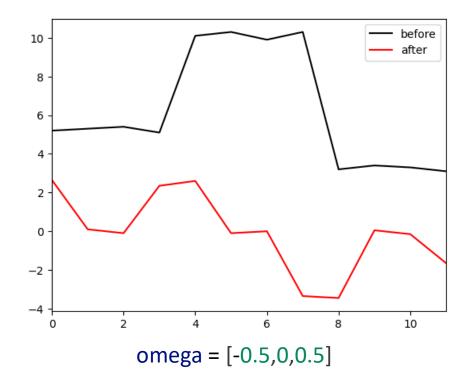




1-D Convolution Example

Define a signal that we can apply convolution to x = [5.2, 5.3, 5.4, 5.1, 10.1, 10.3, 9.9, 10.3, 3.2, 3.4, 3.3, 3.1]





Any questions?

Moving on

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Convolutional layer

(size: 3, stride: 1, dilation: 1)

$$h_i = \mathbf{a} \left[\beta + \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i+1} \right]$$
$$= \mathbf{a} \left[\beta + \sum_{j=1}^3 \omega_j x_{i+j-2} \right]$$

Special case of fully-connected network

Convolutional network:

$$h_i = \mathbf{a} \left[\beta + \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i+1} \right]$$
$$= \mathbf{a} \left[\beta + \sum_{j=1}^3 \omega_j x_{i+j-2} \right]$$

Fully connected network:

(*D* inputs, *D* hidden units)

$$h_i = \mathbf{a} \left| \beta_i + \sum_{j=1}^D \omega_{ij} x_j \right|$$

Special case of fully-connected network

Convolutional network:

$$h_i = \mathbf{a} \left[\beta + \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i+1} \right]$$

$$= \mathbf{a} \left[\beta + \sum_{j=1}^3 \omega_j x_{i+j-2} \right]$$
 3 weights, 1 bias

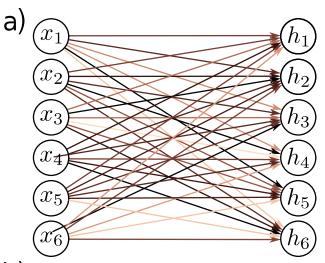
Fully connected network:

(*D* inputs, *D* hidden units)

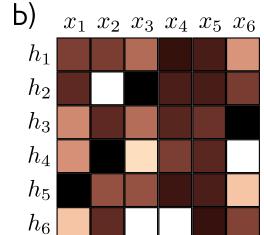
$$h_i = \mathbf{a} \left[\beta_i + \sum_{j=1}^D \omega_{ij} x_j \right]$$

 D^2 weights, D biases

Special case of fully-connected network



6 inputs to each hidden unit



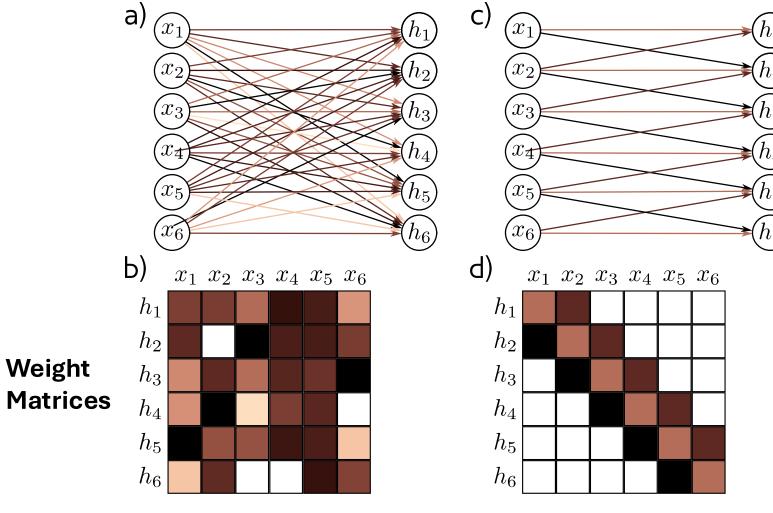
Weight

Matrix

Bias is implied

Fully connected network

Special case of fully-connected network



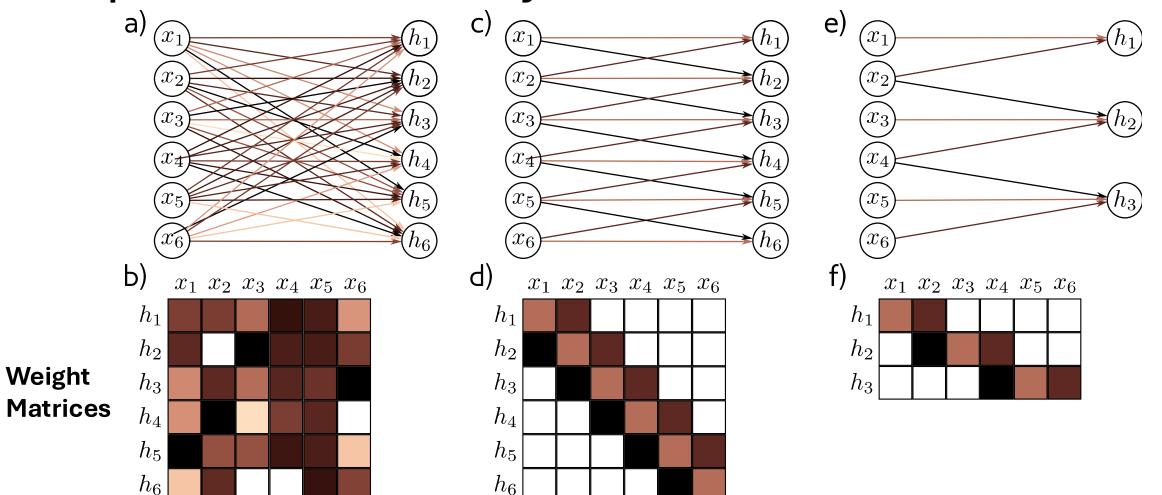
Fully connected network

3 inputs to each hidden unit

Bias is implied

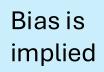
Convolution, kernel 3, stride 1, dilation 1

Special case of fully-connected network



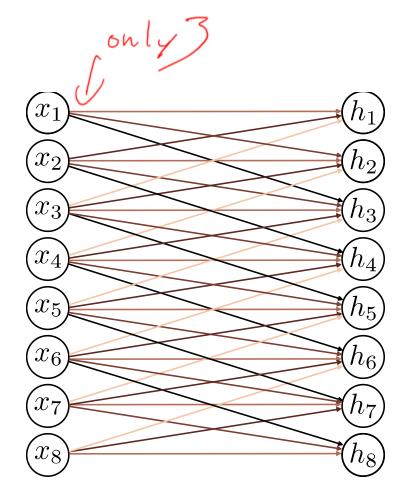
Fully connected network

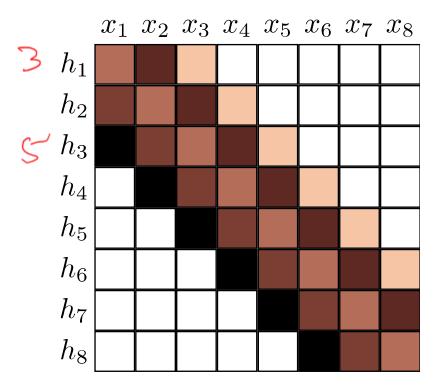
Convolution, size 3, stride 1, dilation 1, zero padding



How was this convolution configured?

- Kernel size? 5
- Stride? (
- Dilation?
- Zero padding / valid?

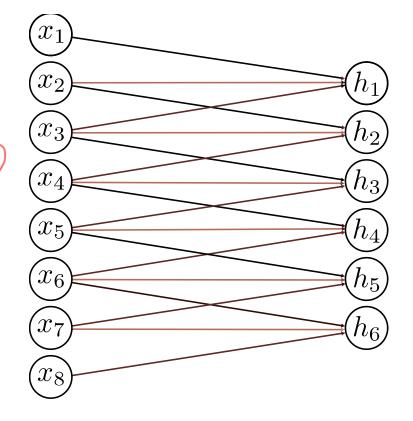


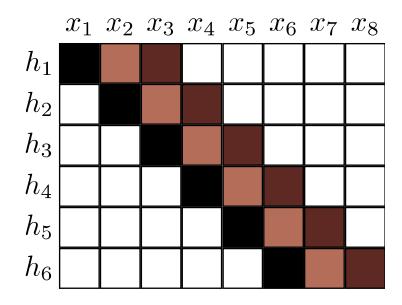


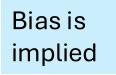
Bias is implied

How was this convolution configured? (2)

- Kernel size? 3
- Stride?
- Dilation?
- Zero padding / valid?

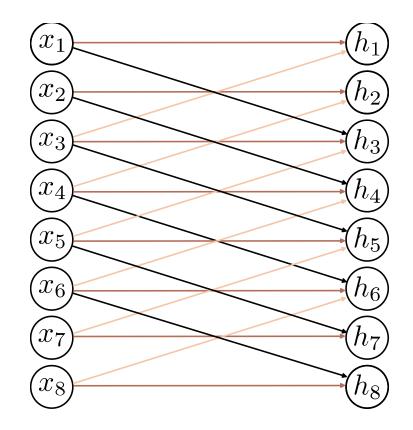


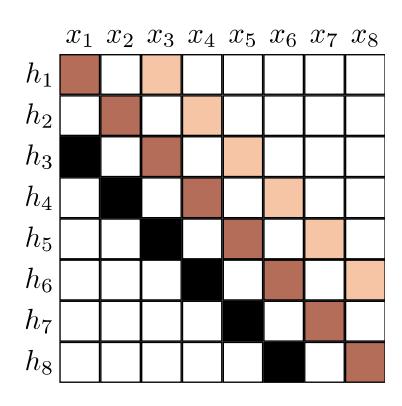




How was this convolution configured? (3)

- Kernel size?
- Stride?
- Dilation? 2
- Zero padding / valid?





Convolution Internals

numpy.lib.stride_tricks.sliding_

Create a sliding window view into the array with the given window shape.

```
Tensor.unfold(dimension, size, step) → Tensor
Returns a view of the original tensor which contains all slices of size from self
tensor in the dimension dimension.
Step between two slices is given by step.
If sizedim is the size of dimension dimension for self, the size of dimension dimension
in the returned tensor will be (sizedim - size) / step + 1.
An additional dimension of size size is appended in the returned tensor.
 Parameters:
     • dimension (int) - dimension in which unfolding happens
     • size (int) - the size of each slice that is unfolded
     • step (int) - the step between each slice
Example:
  >>> x = torch.arange(1., 8)
  tensor([ 1., 2., 3., 4., 5., 6., 7.])
  >>> x.unfold(0, 2, 1)
  tensor([[ 1., 2.],
           [2., 3.],
  >>> x.unfold(0, 2, 2)
  tensor([[ 1., 2.],
           [3., 4.],
                                    ↑ Back to top
           [5., 6.]])
```

https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.sliding_window_view.html https://docs.pytorch.org/docs/stable/generated/torch.Tensor.unfold.html

Any questions?

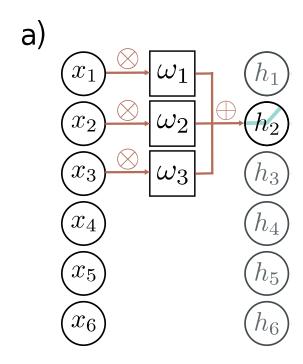
Moving on

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

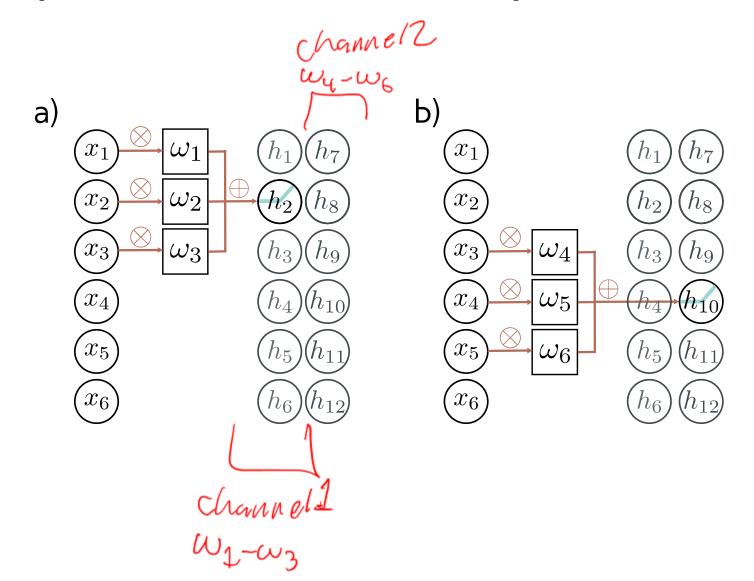
Channels

- The convolutional operation averages together the inputs
- Plus passes through ReLU function
- Result is loss of information
- Solution:
 - Apply several convolutions and stack them in channels.
 - Sometimes also called feature maps.

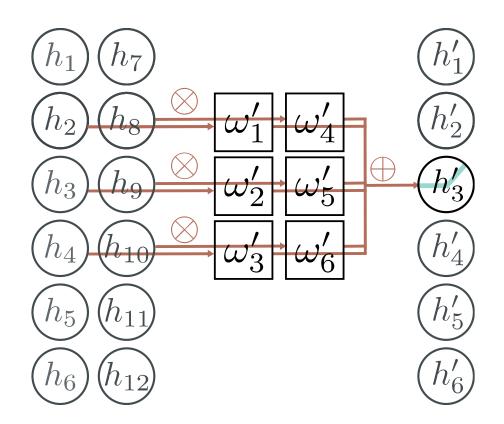
Two output channels, one input channel



Two output channels, one input channel



Two input channels, one output channel



How many parameters?

• If there are C_i input channels and kernel size K

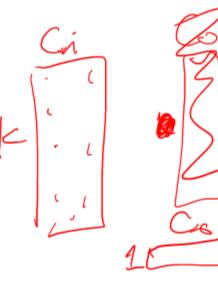
$$\mathbf{\Omega} \in \mathbb{R}^{C_i imes K}$$

$$oldsymbol{eta} \in \mathbb{R}$$

• If there are C_i input channels and C_o output channels

$$\mathbf{\Omega} \in \mathbb{R}^{C_i \times C_o \times K}$$

$$oldsymbol{eta} \in \mathbb{R}^{C_o}$$

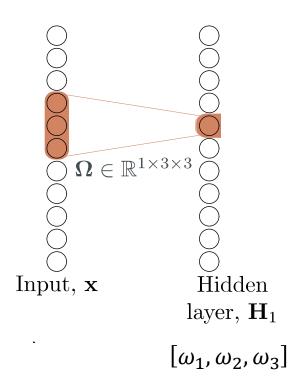


Any questions?

Moving on

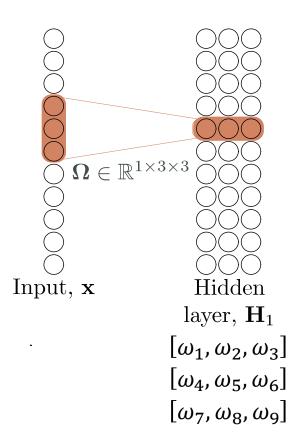
- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

$$\mathbb{R}^{C_i \times C_o \times K}$$



Indicates how many neighboring pixels influence the current output.

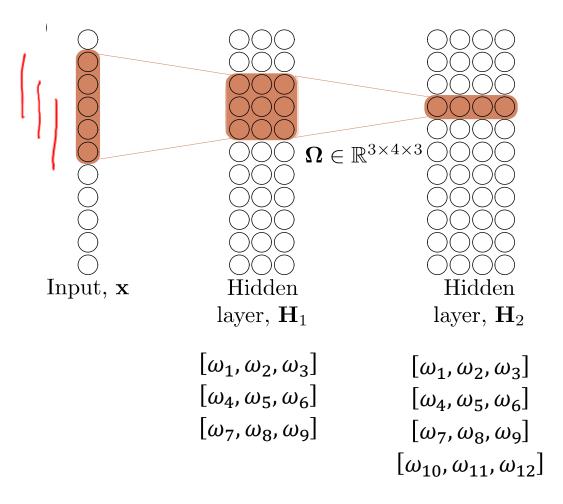
$$\mathbb{R}^{C_i \times C_o \times K}$$



Receptive field only dependent on filter size, not number of channels

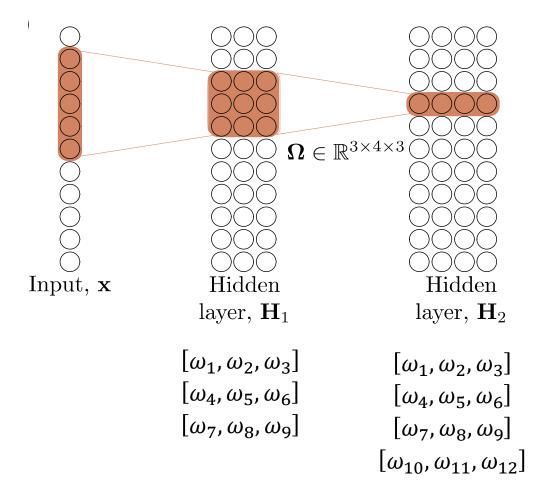
Each channel has a different set of filter weights.

$\mathbb{R}^{C_i \times C_o \times K}$



Influence compounds in subsequent layers.

$\mathbb{R}^{C_i \times C_o \times K}$



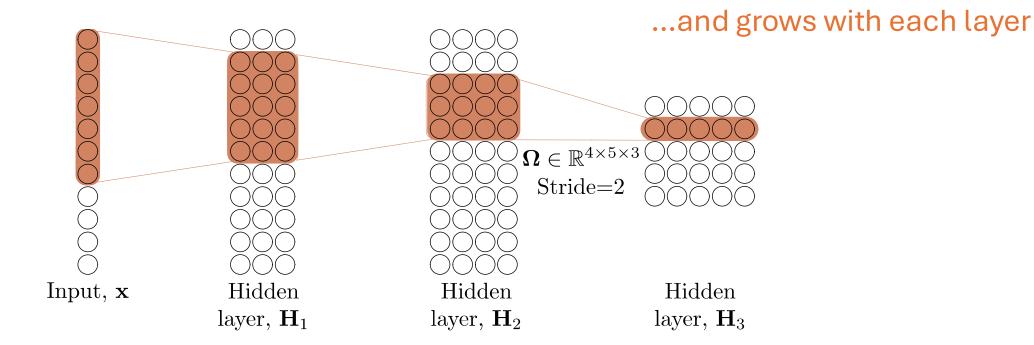
The area of support is equivalent to the area of support of convolution.

$$[\omega_1, \omega_2, \omega_3] \otimes [\omega_4, \omega_5, \omega_6]$$

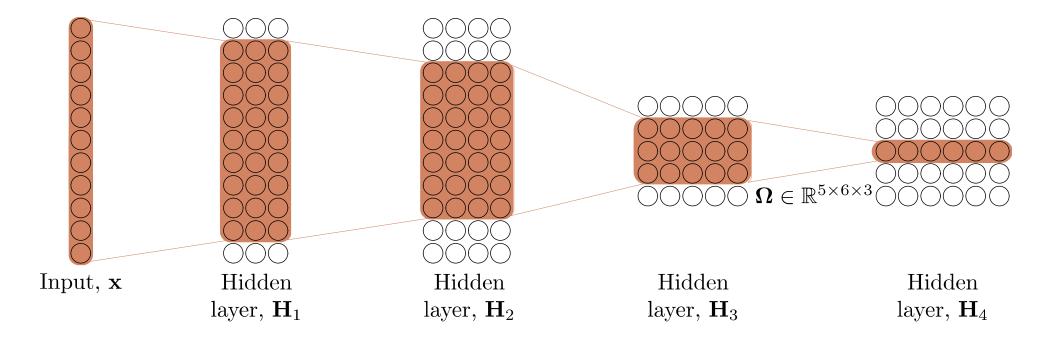
= $[\omega_1, \omega_2, \omega_3, \omega_4, \omega_5]$

$\mathbb{R}^{C_i \times C_o \times K}$

$$[\omega_1, \omega_2, \omega_3, \omega_4, \omega_5] \otimes [\omega_1, \omega_2, \omega_3] = [\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7]$$



$$\mathbb{R}^{C_i \times C_o \times K}$$



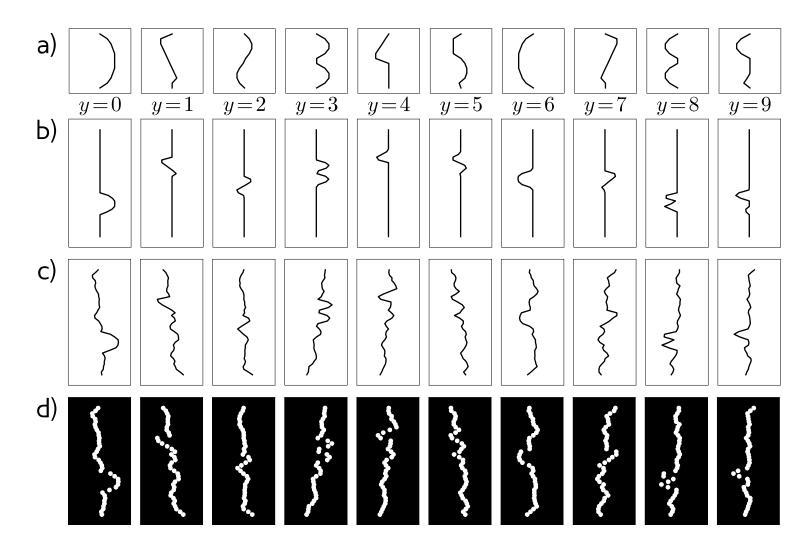
Reminder: Receptive field only dependent on filter size, not number of channels.

Any questions?

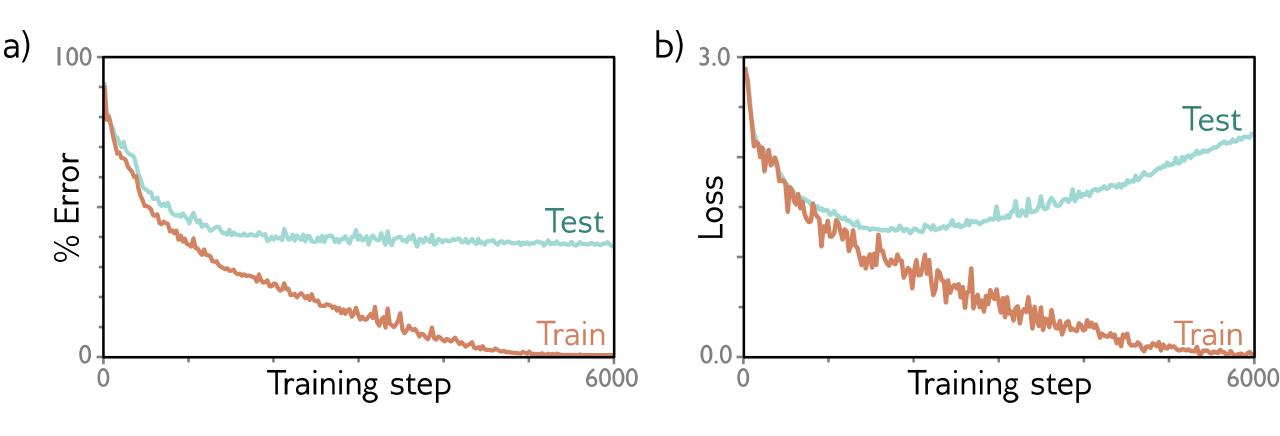
Moving on

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

MNIST 1D Dataset



MNIST-1D results for fully-connected network



Total parameters = 150,185

Convolutional network

- Four hidden layers
- Three convolutional layers
- One fully-connected layer
- Softmax at end
- Total parameters = 2050
- Trained for 100,000 steps with SGD, LR = 0.01, batch size 100

Layer (type:depth-idx)	Output Shape	Param #	
Sequential	======================================		====
—Conv1d: 1-1	[100, 15, 19]	60	
ReLU: 1-2	[100, 15, 19]		
—Conv1d: 1-3	[100, 15, 9]	690	
ReLU: 1-4	[100, 15, 9]		
—Conv1d: 1-5	[100, 15, 4]	690	
ReLU: 1-6	[100, 15, 4]		
—Flatten: 1-7	[100, 60]		
Linear: 1-8	[100, 10]	610	

Total params: 2,050 Trainable params: 2,050 Non-trainable params: 0

Total mult-adds (Units.MEGABYTES): 1.07

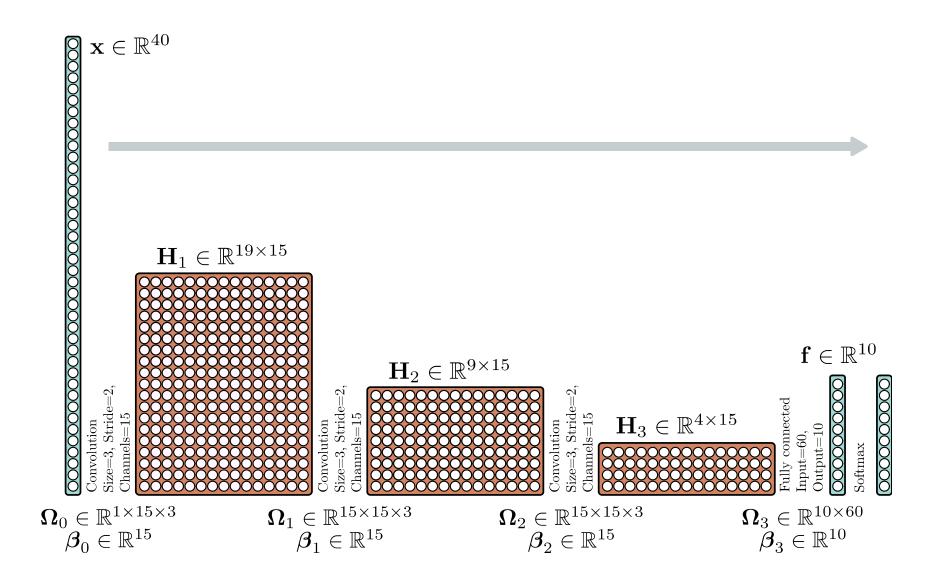
Input size (MB): 0.02

Forward/backward pass size (MB): 0.39

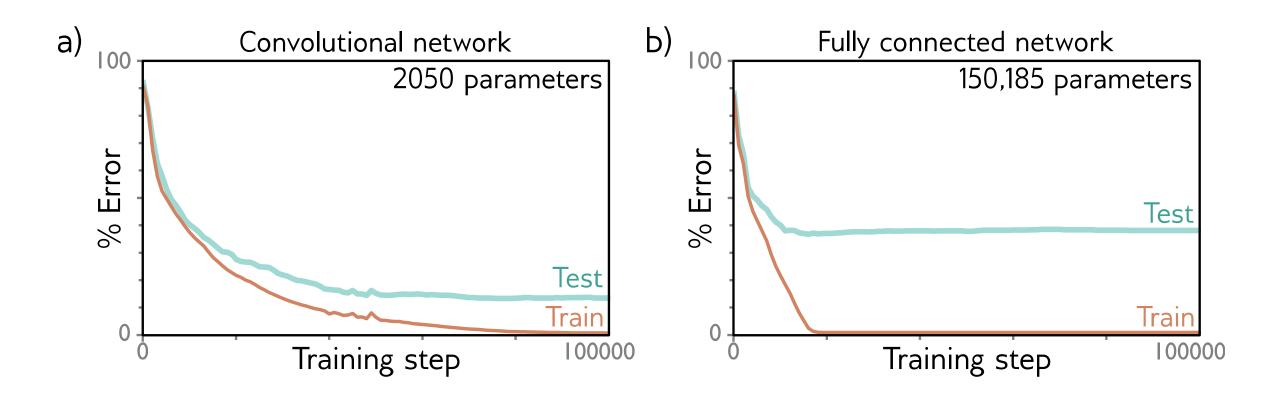
Params size (MB): 0.01

Estimated Total Size (MB): 0.42

MNIST-1D convolutional network



Performance



Why?

- Better inductive bias
- Forced the network to process each location similarly
- Shares information across locations
- Search through a smaller family of input/output mappings, all of which are plausible

Any Questions?

- 1D Convolutional Networks
- 2D Convolutional Networks

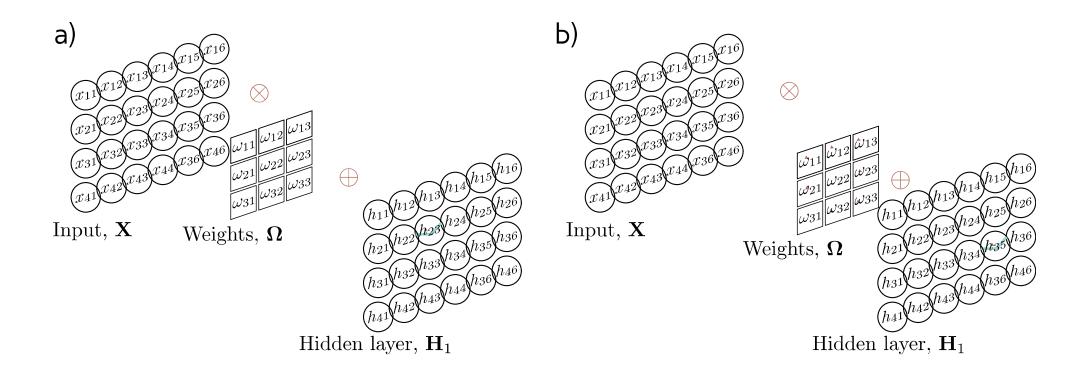
- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

2D Convolution

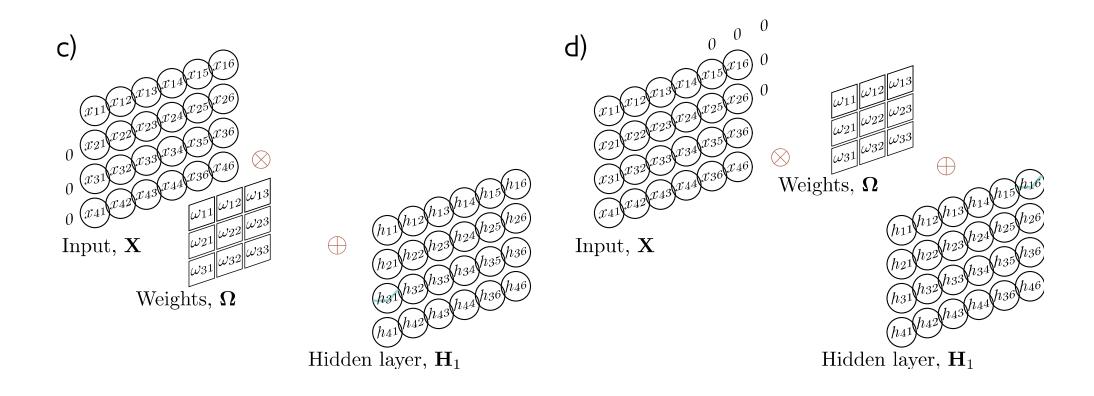
- Convolution in 2D
 - Weighted sum over a K x K region
 - K x K weights
- Build into a convolutional layer by adding bias and passing through activation function

$$h_{i,j} = a \left[\beta + \sum_{m=1}^{3} \sum_{n=1}^{3} \omega_{m,n} x_{i+m-2,j+n-2} \right]$$

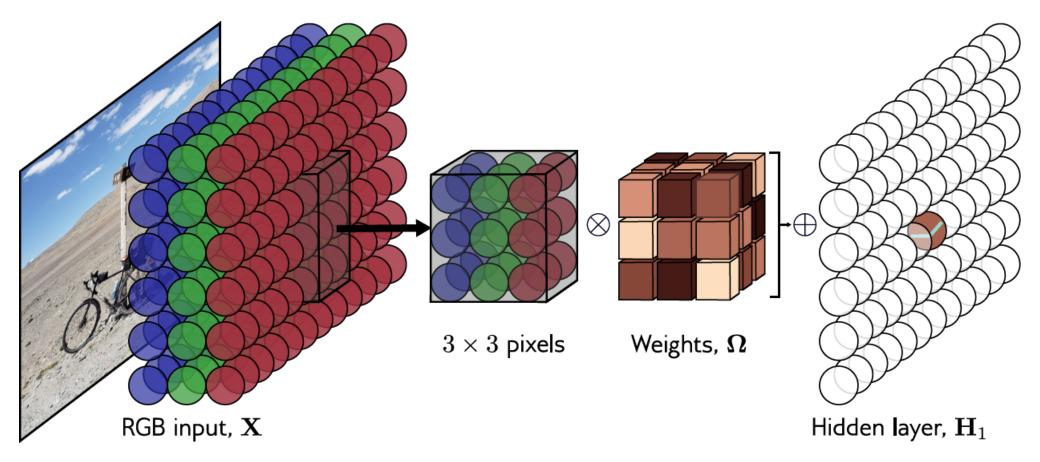
2D Convolution



2D Convolution with Zero Padding



Channels in 2D convolution



Kernel size, stride, dilation all work as you would expect

How many parameters?

• If there are C_i input channels and kernel size K x K

$$oldsymbol{\omega} \in \mathbb{R}^{C_i imes K imes K}$$
 $oldsymbol{\beta} \in \mathbb{R}$

• If there are C_i input channels and C_o output channels

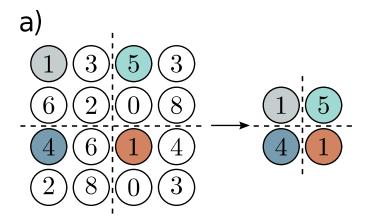
$$\boldsymbol{\omega} \in \mathbb{R}^{C_i \times C_o \times K \times K}$$
 $\boldsymbol{\beta} \in \mathbb{R}^{C_o}$

Any Questions?

Moving on

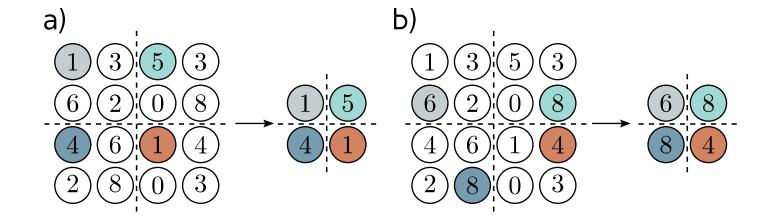
- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

Downsampling



Sample every other position (equivalent to stride two)

Downsampling

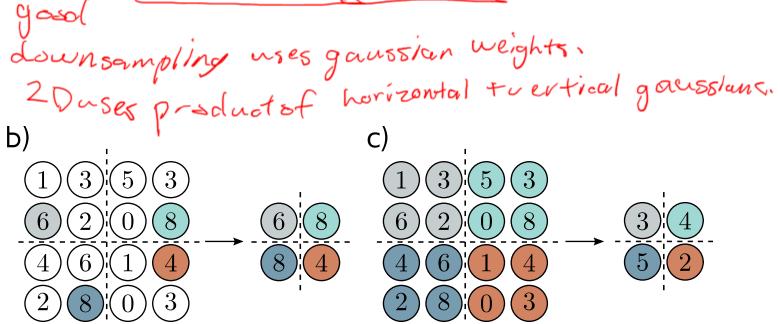


Sample every other position (equivalent to stride two)

Max pooling (partial invariance to translation)

Downsampling Jack

a)

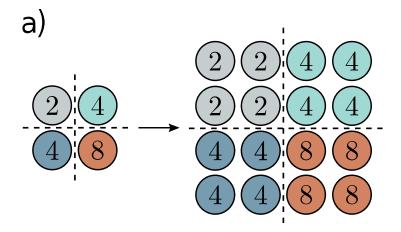


Sample every other position (equivalent to stride two)

Max pooling (partial invariance to translation)

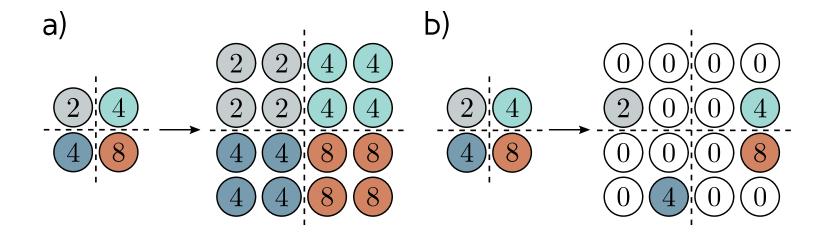
Mean pooling

Upsampling



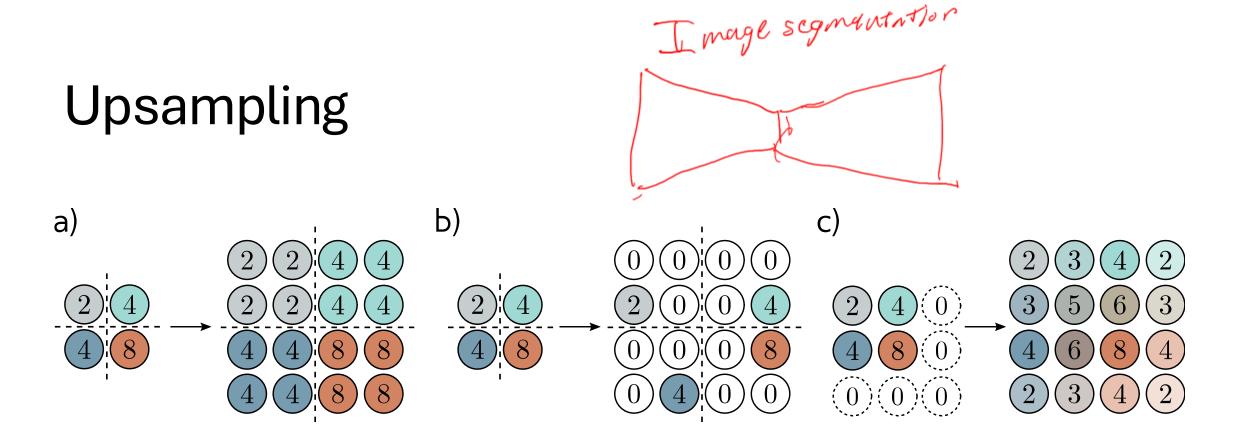
Duplicate

Upsampling



Duplicate

Max-upsampling

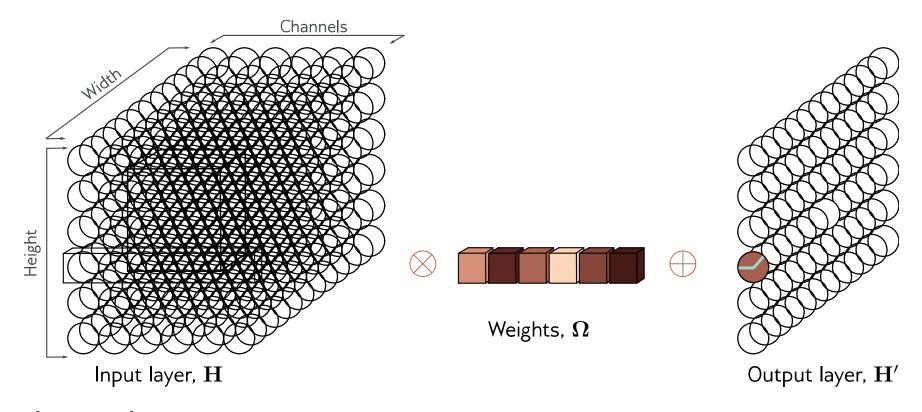


Duplicate

Max-upsampling

Bilinear interpolation

1x1 convolution

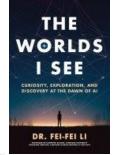


- Mixes channels
- Can change number of channels
- Equivalent to running same fully connected network at each position

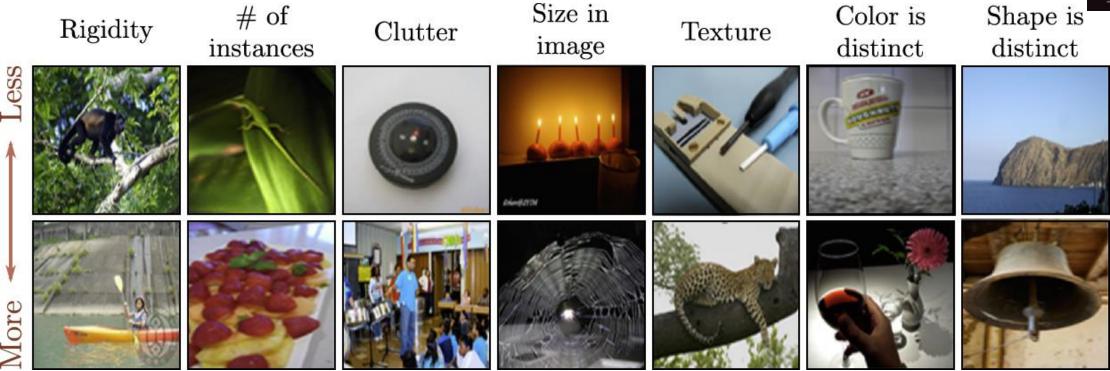
Any Questions?

Moving on

- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

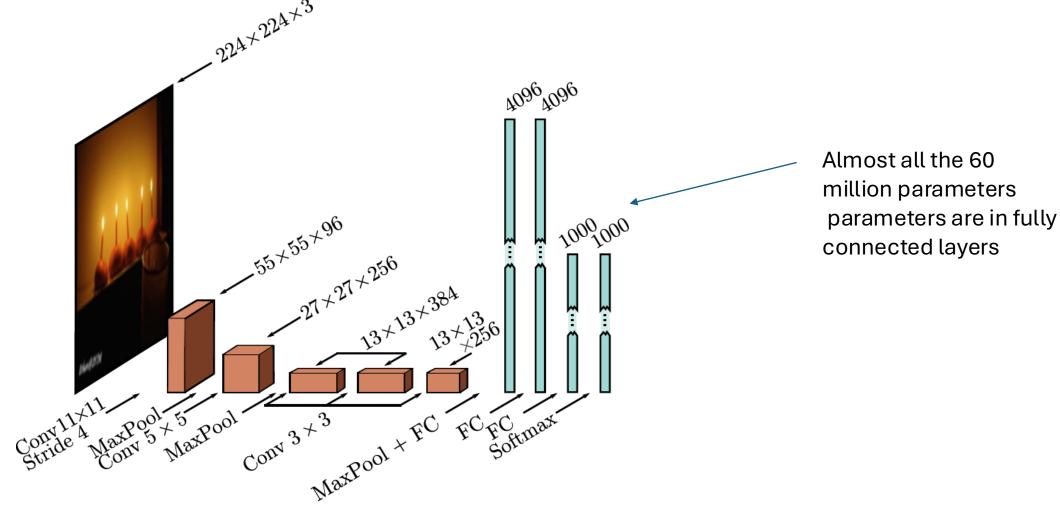


ImageNet 1K database



- 224 x 224 images
- 1,281,167 training images, 50,000 validation images, and 100,000 test images
- 1000 classes

AlexNet (2012)



A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," *Commun. ACM*, vol. 60, no. 6, pp. 84–90, May 2012, doi: 10.1145/3065386.

AlexNet (2012)

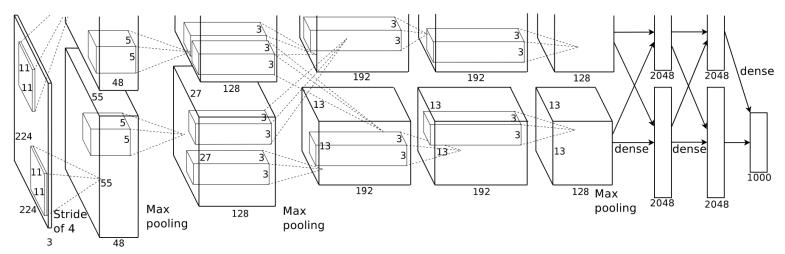


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

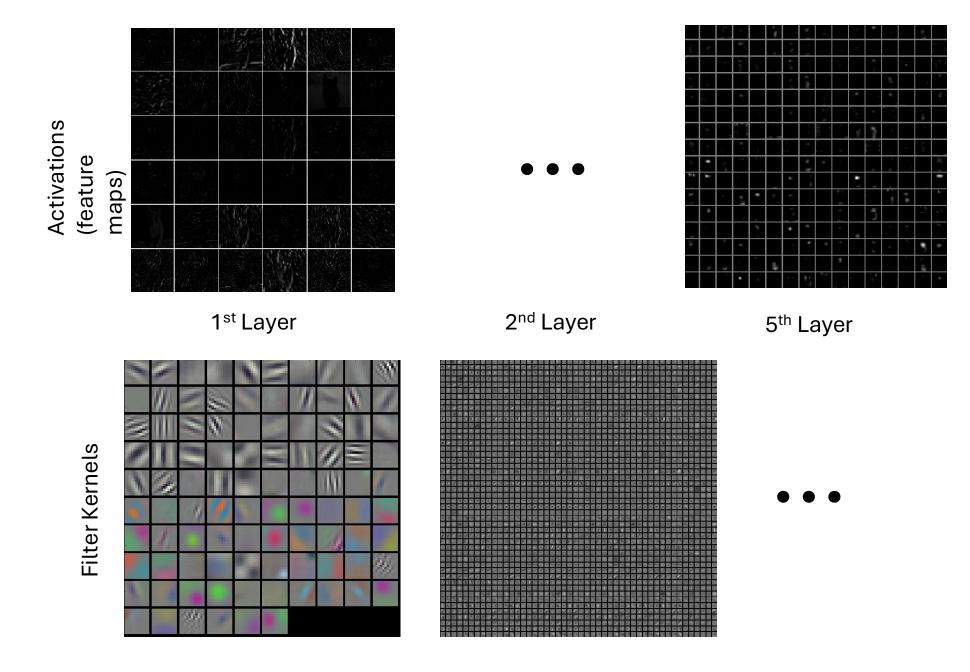
Won the 2012 Large-Scale Vision Recognition Challenge (ILSVRC) by a big margin.

Took between five and six days to train on two GTX 580 3GB GPUs with manually optimized compute kernels.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," *Commun. ACM*, vol. 60, no. 6, pp. 84–90, May 2012, doi: 10.1145/3065386.

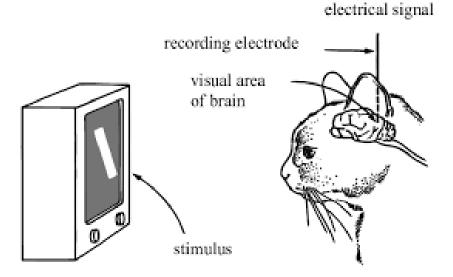
AlexNet

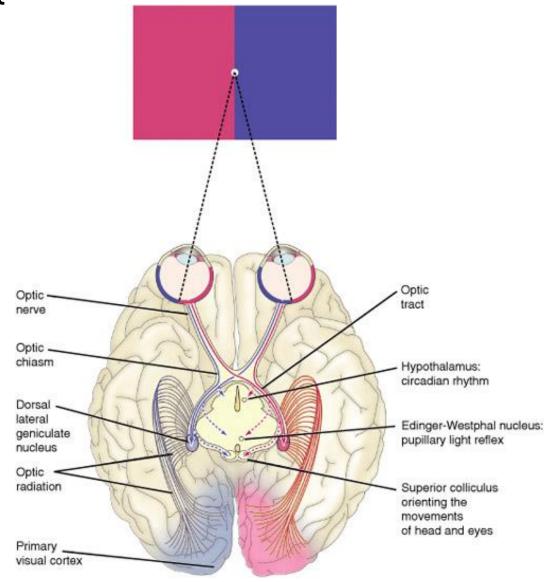
Cat image input (not actual image)



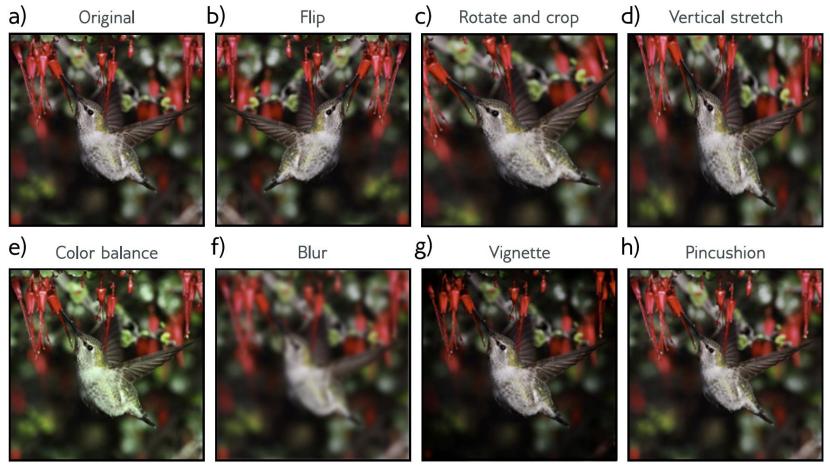
~1959: Hubel & Wiesel – Visual cortex and receptive fields

David Hubel and Torsten Wiesel discovered how neurons in the visual cortex respond to specific patterns of light, such as edges and orientations. Their work on receptive fields provided key insights into hierarchical processing in vision, influencing the design of modern convolutional neural networks.



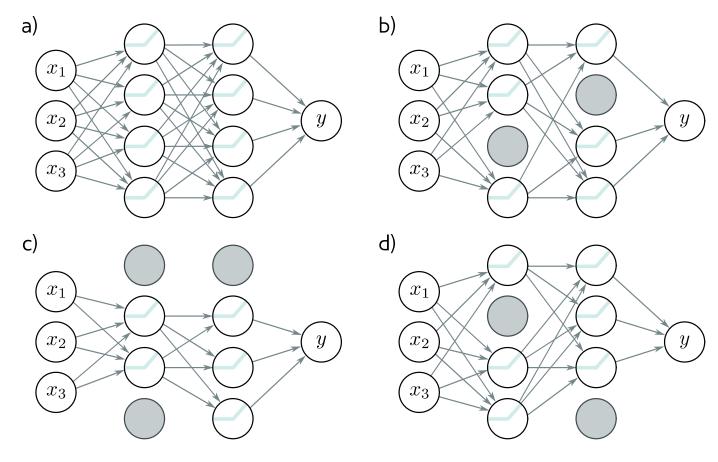


Data augmentation



• Data augmentation a factor of 2048 using (i) spatial transformations and (ii) modifications of the input intensities.

Dropout

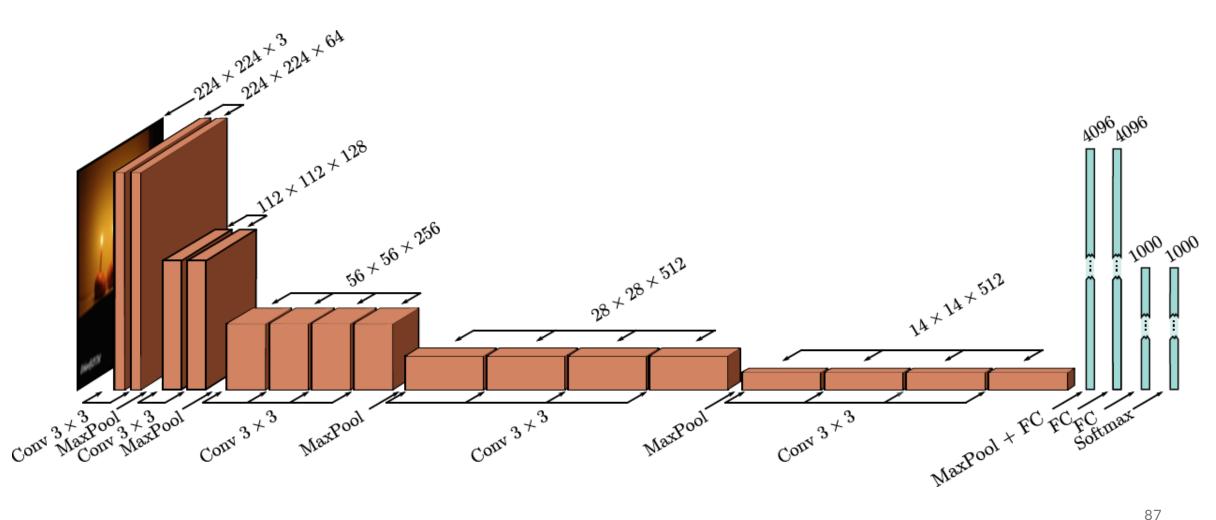


• Dropout was applied in the fully connected layers

Details

- At test time average results from five different cropped and mirrored versions of the image
- SGD with a momentum coefficient of 0.9 and batch size of 128.
- L2 (weight decay) regularizer used.
- This system achieved a 16.4% top-5 error rate and a 38.1% top-1 error rate.

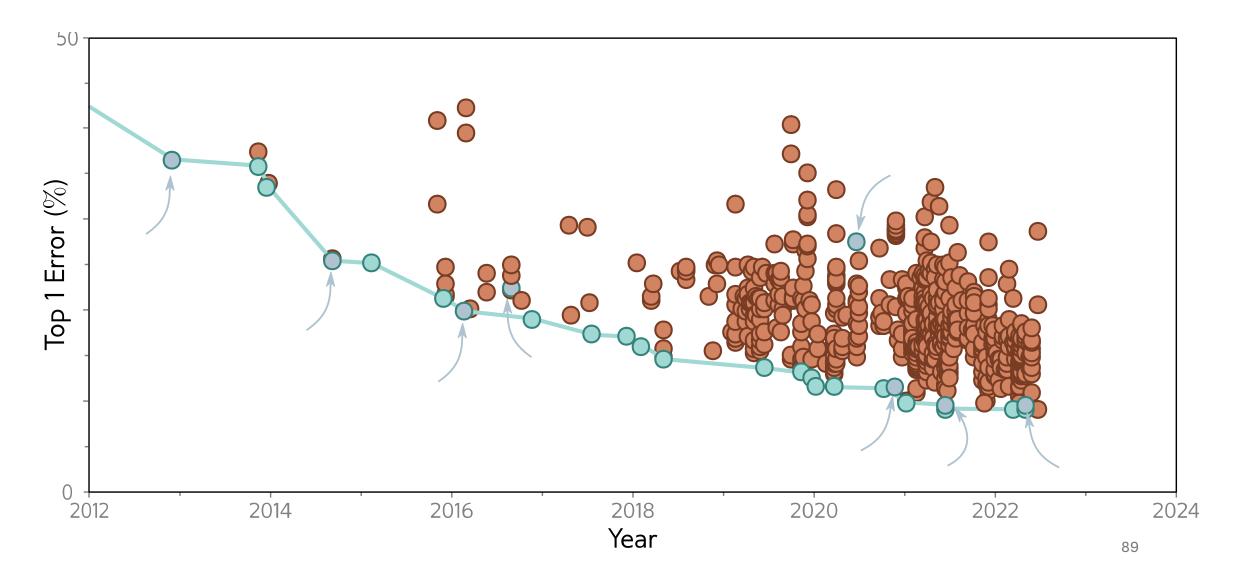
VGG (2015)



Details

- 19 hidden layers
- 144 million parameters
- 6.8% top-5 error rate, 23.7% top-1 error rate

ImageNet History



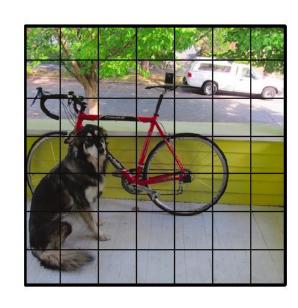
Any Questions?

Moving on

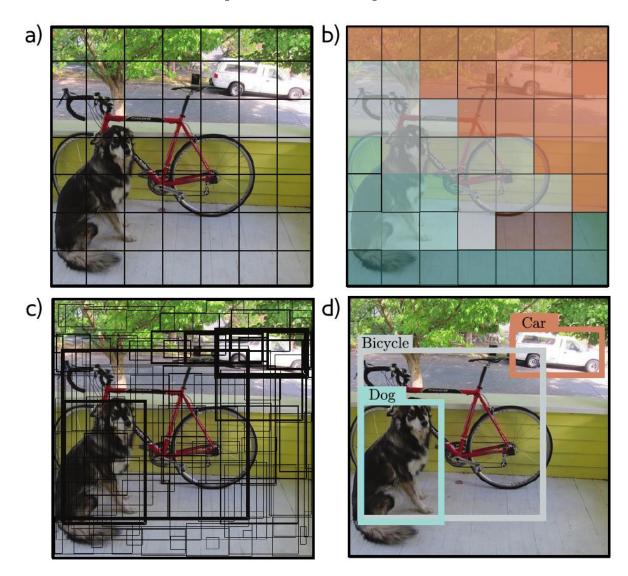
- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

You Only Look Once (YOLO)

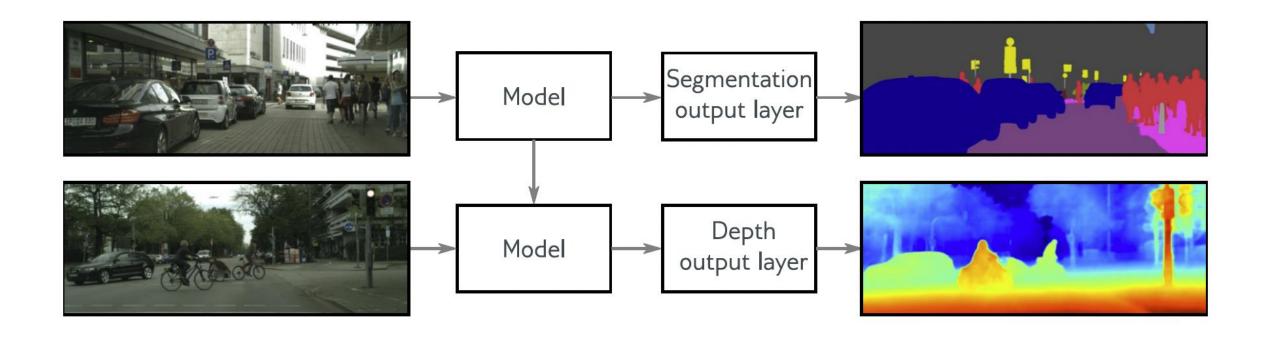
- Network similar to VGG (448x448 input)
- 7×7 grid of locations
- Predict class at each location
- Predict 2 bounding boxes at each location
 - Five parameters –x,y, height, width, and confidence
- Momentum, weight decay, dropout, and data augmentation
- Heuristic at the end to threshold and decide final boxes (non maximum suppression)



Object detection (YOLO)

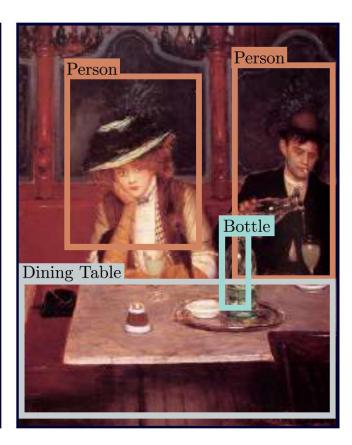


Transfer learning



Transfer learning from ImageNet classification

Results

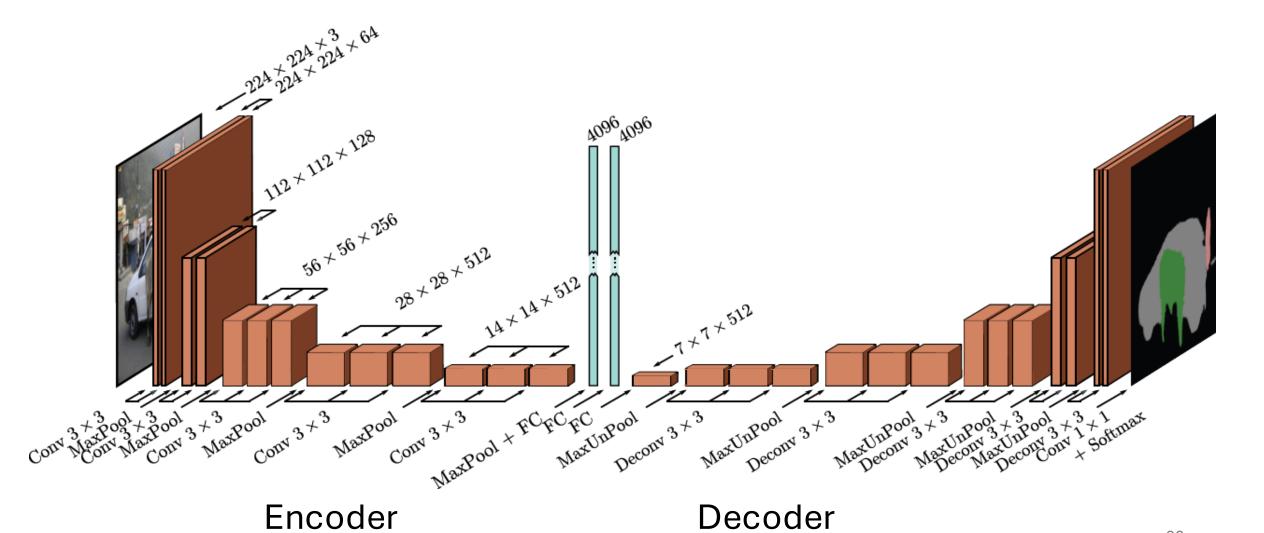


Any Questions?

Moving on

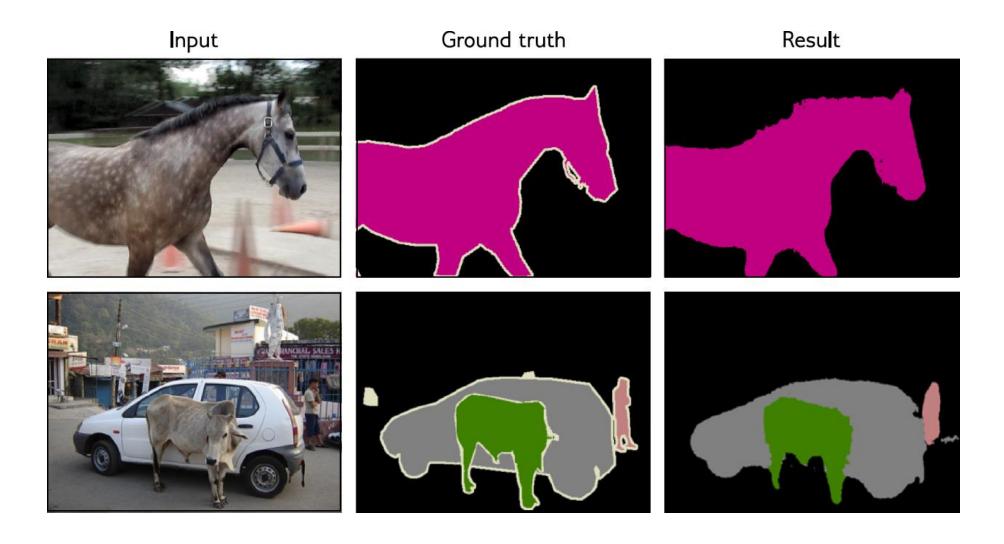
- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

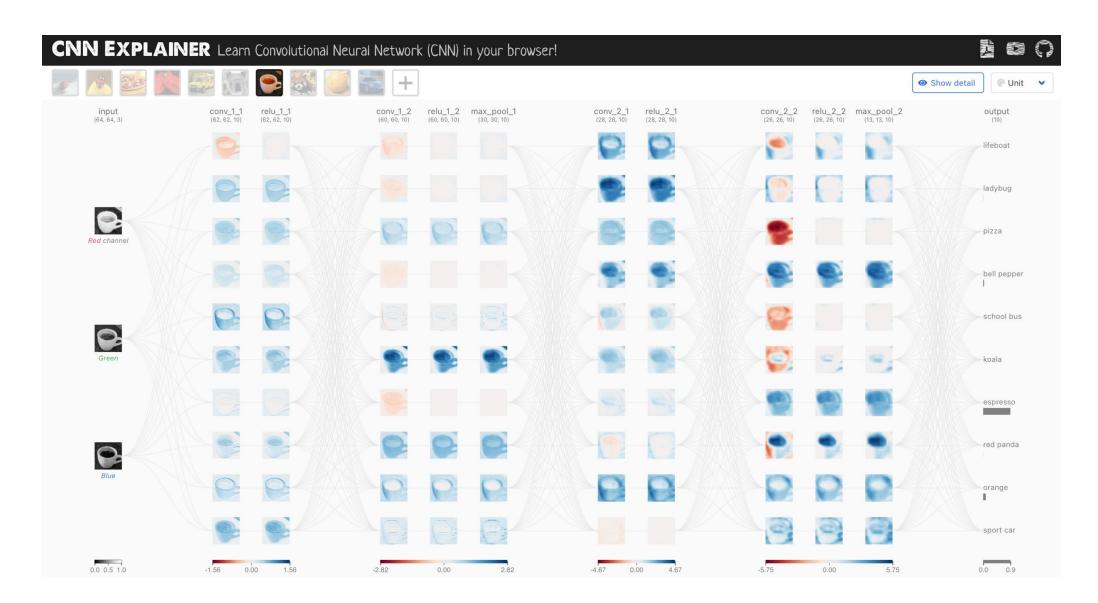
Semantic Segmentation (2015)



96

Semantic segmentation results





https://poloclub.github.io/cnn-explainer/