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Challenges Processing Images, Audio, Text, 
Video…

• Much bigger inputs?
• Variable size inputs?
• But some obvious structure to leverage?



Bigger Inputs

Original image size:

2560x1707x3=

13,109,760 values

Original image: kpmb.com



Variable Size

Original size: 3024x4032x3=

36,578,304 values

Vs previous 2560x1707x3

(not even same ratio)



Structure

←Original

3024x4032x3

Shrunk ⅛ →

378x504x3



Data augmentation (from last time)
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Convolutional Networks
Our first useful approach to these problems with large but structured 
inputs.

● Much bigger inputs? 
● Variable size inputs?  but often can rescale as workaround
● But some obvious structure to leverage? 

Spoiler: recognizing structure helps learn with bigger inputs.



Convolutional Networks as Regularization

TLDR: process different parts of the image as similarly as possible 
to reduce overfitting.

BTW project 1 is using convolutional layers. Anyone notice how 
many parameters?



Plan for Today

• 1D Convolutional Neural 
Networks

• 2D Convolutional Networks

• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D
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• Multiclass classification problem (discrete classes, >2 possible classes)
• Convolutional network

Image classification
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Object detection (+ classification)
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• Multivariate binary classification problem (many outputs, two discrete classes)
• Convolutional encoder-decoder network

Image segmentation
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Networks for images

Problems with fully-connected networks
1. Size

• 224x224 RGB image = 150,528 dimensions
• Hidden layers generally larger than inputs
• One hidden layer = 150,520x150,528 weights -- 22 billion

2. Nearby pixels statistically related
• But could permute pixels and relearn and get same results with FC

3. Should be stable under transformations
• Don’t want to re-learn appearance at different parts of image
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Convolutional networks

• Parameters only look at local image patches
• Share parameters across image
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Any questions?

???
Moving on
• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D



Invariance

• A function f[x] is invariant to a transformation t[] if:

i.e., the function output is the same even after the transformation is 
applied.
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Invariance example

e.g., Image classification
• Image has been translated, but we want our classifier to give the same result 
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Equivariance

• A function f[x] is equivariant to a transformation t[] if:

i.e., the output is transformed in the same way as the input
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Equivariance example
e.g., Image segmentation
• Image has been translated and we want segmentation to translate with it

19



Any questions?

???
Moving on
• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D



• Input vector x:

• Output is weighted sum of neighbors:

• Convolutional kernel or filter:

Convolution* in 1D

Kernel size = 3

* Not technically convolution because weights order is not reversed21



Convolution with kernel size 3
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Convolution with kernel size 3
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Convolution with kernel size 3

Equivariant to translation of input
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Zero padding

Treat positions that are beyond end of the input as zero.
25

Zero Padding



“Valid” convolutions

Only process positions where kernel falls in image (smaller output).
26

Zero Padding Valid Input



Stride, kernel size, and dilation

• Stride = shift by k positions for each output
• Decreases size of output relative to input

• Kernel size = weight a different number of inputs for each output
• Combine information from a larger area
• But kernel size 5 uses 5 parameters

• Dilated or atrous convolutions = intersperse kernel values with 
zeros
• Combine information from a larger area
• Fewer parameters
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1
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1 1
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1 1 1
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1 1 1 2
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1-D Convolution Example
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# Define a signal that we can apply convolution to
x = [5.2, 5.3, 5.4, 5.1, 10.1, 10.3, 9.9, 10.3, 3.2, 3.4, 3.3, 3.1]

omega = [0.33,0.33,0.33] omega = [-0.5,0,0.5]

length=3, stride=1, dilation=1, zero padding



Any questions?

???
Moving on
• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D



Convolutional layer 
(size: 3, stride: 1, dilation: 1)
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Special case of fully-connected network

Fully connected network:
(𝐷 inputs, 𝐷 hidden units)

Convolutional network:
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Special case of fully-connected network

Fully connected network:
(𝐷 inputs, 𝐷 hidden units)

Convolutional network:

3 weights, 1 bias

𝐷2 weights, D biases
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Special case of fully-connected network

Fully connected network
37

Weight
Matrix

Bias is 
implied

6 inputs to 
each hidden 
unit



Special case of fully-connected network

Fully connected network Convolution, kernel 3, 
stride 1, dilation 1 38

Weight
Matrices

Bias is 
implied

3 inputs to 
each hidden 
unit



Special case of fully-connected network

Fully connected network Convolution, size 3, stride 1,
dilation 1, zero padding

Convolution, size 3, stride 2,
dilation 1, zero padding 39

Weight
Matrices

Bias is 
implied



How was this convolution configured?

• Kernel size?
• Stride?
• Dilation?
• Zero padding / valid?
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Bias is 
implied



How was this convolution configured? (2)

• Kernel size?
• Stride?
• Dilation?
• Zero padding / valid?
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Bias is 
implied



How was this convolution configured? (3)

• Kernel size?
• Stride?
• Dilation?
• Zero padding / valid?
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Bias is 
implied



Convolution Internals

https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.sliding_window_view.html
https://docs.pytorch.org/docs/stable/generated/torch.Tensor.unfold.html



Any questions?

???
Moving on
• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D



Channels

• The convolutional operation averages together the inputs
• Plus passes through ReLU function
• Result is loss of information
• Solution: 

• Apply several convolutions and stack them in channels.
• Sometimes also called feature maps.
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Two output channels, one input channel
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Two output channels, one input channel
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Two input channels, one output channel
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How many parameters?

• If there are 𝐶𝑖  input channels and kernel size K

• If there are 𝐶𝑖  input channels and 𝐶𝑜 output channels 
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Any questions?

???
Moving on
• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D



Receptive fields
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ℝ𝐶𝑖×𝐶𝑜×𝐾

Indicates how many neighboring 
pixels influence the current output.

𝜔1, 𝜔2, 𝜔3



Receptive fields

52

ℝ𝐶𝑖×𝐶𝑜×𝐾

Receptive field only dependent 
on filter size, not number of 
channels

Each channel has a different set 
of filter weights.

𝜔1, 𝜔2, 𝜔3

𝜔4, 𝜔5, 𝜔6

𝜔7, 𝜔8, 𝜔9



Receptive fields
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ℝ𝐶𝑖×𝐶𝑜×𝐾

𝜔1, 𝜔2, 𝜔3

𝜔4, 𝜔5, 𝜔6

𝜔7, 𝜔8, 𝜔9

𝜔1, 𝜔2, 𝜔3

𝜔4, 𝜔5, 𝜔6

𝜔7, 𝜔8, 𝜔9

𝜔10, 𝜔11, 𝜔12

Influence compounds in 
subsequent layers.



Receptive fields
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ℝ𝐶𝑖×𝐶𝑜×𝐾

𝜔1, 𝜔2, 𝜔3 ⊗ 𝜔4, 𝜔5, 𝜔6

= [𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5]

𝜔1, 𝜔2, 𝜔3

𝜔4, 𝜔5, 𝜔6

𝜔7, 𝜔8, 𝜔9

𝜔1, 𝜔2, 𝜔3

𝜔4, 𝜔5, 𝜔6

𝜔7, 𝜔8, 𝜔9

𝜔10, 𝜔11, 𝜔12

The area of support is equivalent 
to the area of support of 
convolution.



Receptive fields
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ℝ𝐶𝑖×𝐶𝑜×𝐾

𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5 ⊗ 𝜔1, 𝜔2, 𝜔3 = [𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6, 𝜔7]

…and grows with each layer



Receptive fields
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ℝ𝐶𝑖×𝐶𝑜×𝐾

Reminder: Receptive field only dependent on filter size, 
not number of channels.



Any questions?

???
Moving on
• Networks for images
• Invariance and equivariance
• 1D convolution
• Convolutional layers
• Channels
• Receptive fields
• Convolutional network for MNIST 

1D



MNIST 1D Dataset

58



MNIST-1D results for fully-connected network
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Total parameters = 150,185



Convolutional network

• Four hidden layers
• Three convolutional layers
• One fully-connected layer
• Softmax at end
• Total parameters = 2050
• Trained for 100,000 steps with 

SGD, LR = 0.01, batch size 100
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MNIST-1D convolutional network
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Performance
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Why?

• Better inductive bias
• Forced the network to process each location similarly
• Shares information across locations
• Search through a smaller family of input/output mappings, all of 

which are plausible
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Any Questions?

• 1D Convolutional Networks
• 2D Convolutional Networks

• 2D Convolution
• Downsampling and upsampling, 

1x1 convolution
• Image classification
• Object detection
• Semantic segmentation
• Residual networks
• U-Nets and hourglass networks 
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2D Convolution

• Convolution in 2D 
• Weighted sum over a K x K region
• K x K weights

• Build into a convolutional layer by adding bias and passing 
through activation function 
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2D Convolution
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2D Convolution with Zero Padding
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Channels in 2D convolution

Kernel size, stride, dilation all 
work as you would expect 68



How many parameters?

• If there are 𝐶𝑖  input channels and kernel size K x K

• If there are 𝐶𝑖  input channels and 𝐶𝑜 output channels 
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Any Questions?

???
Moving on
• 2D Convolution
• Downsampling and upsampling, 

1x1 convolution
• Image classification
• Object detection
• Semantic segmentation
• Residual networks
• U-Nets and hourglass networks 

70



Downsampling

Sample every other 
position (equivalent 

to stride two)
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Downsampling

Sample every other 
position (equivalent 

to stride two)

Max pooling
(partial invariance to 

translation)
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Downsampling

Sample every other 
position (equivalent 

to stride two)

Max pooling
(partial invariance to 

translation)

Mean pooling
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Upsampling

Duplicate
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Upsampling

Duplicate Max-upsampling
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Upsampling

Duplicate Max-upsampling Bilinear interpolation
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1x1 convolution 

• Mixes channels
• Can change number of channels
• Equivalent to running same fully connected network at each position
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Any Questions?

???
Moving on
• 2D Convolution
• Downsampling and upsampling, 

1x1 convolution
• Image classification
• Object detection
• Semantic segmentation
• Residual networks
• U-Nets and hourglass networks
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ImageNet 1K database

• 224 x 224 images
• 1,281,167 training images, 50,000 validation images, and 100,000 test 

images
• 1000 classes
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Fei-Fei Li



AlexNet (2012) 

Almost all the 60 
million parameters
 parameters are in fully 
connected layers
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A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional 
neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2012, doi: 10.1145/3065386.

https://doi.org/10.1145/3065386


AlexNet (2012)

81

Won the 2012 Large-Scale Vision Recognition Challenge (ILSVRC) by a big 
margin.

Took between five and six days to train on two GTX 580 3GB GPUs with manually 
optimized compute kernels.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional 
neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2012, doi: 10.1145/3065386.

https://doi.org/10.1145/3065386


https://cs231n.github.io/understanding-cnn/ 

AlexNet
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1st Layer

Cat image input
(not actual image)

5th Layer
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2nd Layer

https://cs231n.github.io/understanding-cnn/
https://cs231n.github.io/understanding-cnn/
https://cs231n.github.io/understanding-cnn/
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~1959: Hubel & Wiesel – 
Visual cortex and 
receptive fields

David Hubel and Torsten Wiesel discovered how 
neurons in the visual cortex respond to specific 
patterns of light, such as edges and orientations. 
Their work on receptive fields provided key insights 
into hierarchical processing in vision, influencing 
the design of modern convolutional neural 
networks.



Data augmentation

• Data augmentation a factor of 2048 using (i) spatial transformations
and (ii) modifications of the input intensities. 84



Dropout

• Dropout was applied in the fully connected layers
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Details

• At test time average results from five different cropped and
mirrored versions of the image

• SGD with a momentum coefficient of 0.9 and batch size of 128. 
• L2 (weight decay) regularizer used. 
• This system achieved a 16.4% top-5 error rate and a 38.1%

top-1 error rate. 
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VGG (2015)
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Details

• 19 hidden layers
• 144 million parameters
• 6.8% top-5 error rate, 23.7% top-1 error rate
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ImageNet History
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Any Questions?

???
Moving on
• 2D Convolution
• Downsampling and upsampling, 

1x1 convolution
• Image classification
• Object detection
• Semantic segmentation
• Residual networks
• U-Nets and hourglass networks
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You Only Look Once (YOLO)

• Network similar to VGG (448x448 input)
• 7×7 grid of locations
• Predict class at each location
• Predict 2 bounding boxes at each location

• Five parameters –x,y, height, width, and confidence

• Momentum, weight decay, dropout, and data augmentation
• Heuristic at the end to threshold and decide final boxes – 

(non maximum suppression) 
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Object detection (YOLO)
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Transfer learning

Transfer learning from ImageNet classification
93



Results

94



Any Questions?

???
Moving on
• 2D Convolution
• Downsampling and upsampling, 

1x1 convolution
• Image classification
• Object detection
• Semantic segmentation
• Residual networks
• U-Nets and hourglass networks
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Semantic Segmentation (2015)

Encoder                                       Decoder
96



Semantic segmentation results
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https://poloclub.github.io/cnn-explainer/ 
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https://poloclub.github.io/cnn-explainer/
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